Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.28.21259398

ABSTRACT

Previous studies have described RT-LAMP methodology for the rapid detection of SARS-CoV-2 in nasopharyngeal/oropharyngeal swab and saliva samples. Here we describe the validation of an improved simple sample preparation method for Direct SARS-CoV-2 RT-LAMP, removing the need for RNA extraction, using 559 swabs and 86,760 saliva samples from asymptomatic and symptomatic individuals across multiple healthcare settings. Using this improved method we report a diagnostic sensitivity (DSe) of 70.35% (95% CI 63.48-76.60%) on swabs and 84.62% (79.50-88.88%) on saliva, with diagnostic specificity (DSp) 100% (98.98-100.00%) on swabs and 100% (99.72-100.00%) on saliva when compared to RT-qPCR. Analysing samples with RT-qPCR ORF1ab CT values of <25 and <33 (high and medium-high viral loads, respectively), we found DSe of 100% (96.34-100%) and 77.78% (70.99-83.62%) for swabs, and 99.01% (94.61-99.97%) and 87.32% (80.71-92.31%) for saliva. We also describe RNA RT-LAMP (on extracted RNA) performed on 12,619 swabs and 12,521 saliva samples to provide updated performance data with DSe and DSp of 95.98% (92.74-98.06%) and 99.99% (99.95-100%) for swabs, and 80.65% (73.54-86.54%) and 99.99% (99.95-100%) for saliva, respectively. We also report on daily samples collected from one individual from symptom onset where both Direct and RNA RT-LAMP detected SARS-CoV-2 in saliva collected on all six days where symptoms were recorded, with RNA RT-LAMP detecting SARS-CoV-2 for an additional further day. The findings from these studies demonstrate that RT-LAMP testing of swabs and saliva is potentially applicable to a variety of use-cases, including frequent, interval-based testing of saliva from asymptomatic individuals via Direct RT-LAMP that may be missed using symptomatic testing alone.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.05.21256396

ABSTRACT

Background SARS-CoV-2 variants of concern (VOCs) have been associated with higher rate of transmission, and evasion of immunisation and antibody therapeutics. Variant sequencing is widely utilized in the UK. However, only 0.5% (~650k) of the 133 million cumulative positive cases worldwide were sequenced (in GISAID) on 08 April 2021 with 97% from Europe and North America and only ~0.25% (~320k) were variant sequences. This may be due to the lack of availability, high cost, infrastructure and expert staff required for sequencing. Public health decisions based on a non-randomised sample of 0.5% of the population may be insufficiently powered, and subject to sampling bias and systematic error. In addition, sequencing is rarely available in situ in a clinically relevant timeframe and thus, is not currently compatible with diagnosis and treatment patient care pathways. Therefore, we investigated an alternative approach using polymerase chain reaction (PCR) genotyping to detect the key single nucleotide polymorphisms (SNPs) associated with increased transmission and immune evasion in SARS-CoV-2 variants. Methods We investigated the utility of SARS-CoV-2 SNP detection with a panel of PCR-genotyping assays in a large data set of 640,482 SARS-CoV-2 high quality, full length sequences using a prospective in silico trial design and explored the potential impact of rapid in situ variant testing on the COVID-19 diagnosis and treatment patient pathway. Results Five SNPs were selected by screening the published literature for a reported association with increased transmission and / or immune evasion. 344881 sequences contained one or more of the five SNPs. This algorithm of SNPs was found to be able to identify the four variants of concern (VOCs) and sequences containing the E484K and L452R escape mutations. Interpretation The in silico analysis suggest that the key mutations and variants of SARS-CoV-2 may be reliably detected using a focused algorithm of biologically relevant SNPs. This highlights the potential for rapid in situ PCR genotyping to compliment or replace sequencing or to be utilized instead of sequences in settings where sequencing is not feasible, accessible or affordable. Rapid detection of variants with in situ PCR genotyping may facilitate a more effective COVID-19 diagnosis and treatment patient pathway.


Subject(s)
COVID-19 , Refractive Errors
3.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3835132

ABSTRACT

Background: SARS-CoV-2 variants of concern (VOCs) have been associated with higher rate of transmission, and evasion of immunisation and antibody therapeutics. Variant sequencing is widely utilized in the UK. However, only 0.5% (~650k) of the 133 million cumulative positive cases worldwide were sequenced (in GISAID) on 08 April 2021 with 97% from Europe and North America and only ~0.25% (~320k) were variant sequences. This may be due to the lack of availability, high cost, infrastructure and expert staff required for sequencing. Public health decisions based on a non-randomised sample of 0.5% of the population may be insufficiently powered, and subject to sampling bias and systematic error. In addition, sequencing is rarely available in situ in a clinically relevant timeframe and thus, is not currently compatible with diagnosis and treatment patient care pathways. Therefore, we investigated an alternative approach using polymerase chain reaction (PCR) genotyping to detect the key single nucleotide polymorphisms (SNPs) associated with increased transmission and immune evasion in SARS-CoV-2 variants.Methods: We investigated the utility of SARS-CoV-2 SNP detection with a panel of PCR-genotyping assays in a large data set of 640,482 SARS-CoV-2 high quality, full length sequences using a prospective in silico trial design and explored the potential impact of rapid in situ variant testing on the COVID-19 diagnosis and treatment patient pathway. Results: Five SNPs were selected by screening the published literature for a reported association with increased transmission and / or immune evasion. 344881 sequences contained one or more of the five SNPs. This algorithm of SNPs was found to be able to identify the four variants of concern (VOCs) and sequences containing the E484K and L452R escape mutations.Interpretation: The in silico analysis suggest that the key mutations and variants of SARS-CoV-2 may be reliably detected using a focused algorithm of biologically relevant SNPs. This highlights the potential for rapid in situ PCR genotyping to compliment or replace sequencing or to be utilized instead of sequences in settings where sequencing is not feasible, accessible or affordable. Rapid detection of variants with in situ PCR genotyping may facilitate a more effective COVID-19 diagnosis and treatment patient pathway. Funding: The study was funded by Primer Design (UK), with kind contributions from all academic partners.Declaration of Interests: Stephen Kidd, Nick Cortes, Nathan Moore, Kate Templeton, Alex Richter and Alice Goring have no conflicting interests. R.A Trevor, Daryl Borley, Paul Oladimeji, Prachi Teltumbde, Seden Grippon, and Aida Sanchez-Bretano are employees of Novacyt group, which is a medical diagnostics company operating in the COVID-19 variant testing field. R.A Trevor has no additional direct conflicts but is a shareholder in a number of un-related private and public companies that do not operate in the COVID-19 or diagnostics field. Joanne Martin has no direct conflicts of interest. She is a principal investigator of a care home trial using Novacyt rapid testing and National Specialty Advisor for Pathology for NHS England and Improvement. She is a director and shareholder of Biomoti a drug delivery company and has a shareholding in Glyconics, a diagnostics company.


Subject(s)
COVID-19 , Learning Disabilities
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.10.21251350

ABSTRACT

Low procalcitonin (PCT) concentrations (<0.5ng/mL) can facilitate exclusion of bacterial co-infection in viral infections, including COVID-19. However, costs associated with PCT measurement preclude universal adoption, indicating a need to identify settings where PCT provides clinical information beyond that offered by other inflammatory markers, such as C-reactive protein (CRP) and white cell count (WCC). In an unselected cohort of 299 COVID-19 patients, we tested the hypothesis that PCT<0.5ng/mL was associated with lower levels of CRP and WCC. We demonstrated that CRP values below the geometric mean of the entire patient population had a negative predictive value for PCT<0.5ng/mL of 97.6% and 100% at baseline and 48 hours into admission respectively, and that this relationship was not confounded by intensive care admission or microbiological findings. CRP-guided PCT testing algorithms can reduce costs and support antimicrobial stewardship strategies in COVID-19.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.30.20142935

ABSTRACT

The COVID-19 pandemic has illustrated the importance of rapid, accurate diagnostic testing for the effective triaging and cohorting of patients and timely tracking and tracing of cases. However, a surge in diagnostic testing quickly resulted in worldwide competition for the same sample preparation and real-time RT-PCR diagnostic reagents (rRT-PCR). Consequently, Hampshire Hospitals NHS Foundation Trust, UK sought to diversify their diagnostic portfolio by exploring alternative amplification chemistries including those that permit direct testing without RNA extraction. This study describes the validation of a SARS-CoV-2 RT-LAMP assay, which is an isothermal, autocycling, strand displacement nucleic acid amplification technique which can be performed on extracted RNA (RNA RT-LAMP) or directly from swab (Direct RT-LAMP). Analytical specificity (ASp) of this new RT-LAMP assay was 100% and analytical sensitivity (ASe) was between 1x101 and 1x102 copies when using a synthetic DNA target. The overall diagnostic sensitivity (DSe) and specificity (DSp) of RNA RT LAMP was 97% and 99% respectively, relative to the standard of care (SoC) rRT-PCR. When a CT cut-off of 33 was employed, above which increasingly, evidence suggests there is a very low risk of patients shedding infectious virus, the diagnostic sensitivity was 100%. The DSe and DSp of Direct-RT LAMP was 67% and 97%, respectively. When setting CT cut-offs of [≤]33 and [≤]25, the DSe increased to 75% and 100%, respectively. Time from swab-to-result for a strong positive sample (CT < 25) was < 15 minutes. We propose that RNA RT-LAMP could replace rRT-PCR where there is a need for increase in throughput, whereas Direct RT-LAMP could be used as a screening tool for triaging patients into appropriate hospitals wards, at GP surgeries and in care homes, or for population screening to identify highly contagious individuals (super shedders). Direct RT-LAMP could also be used during times of high prevalence to save critical extraction and rRT-PCR reagents by screening out those strong positives from diagnostic pipelines.


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.28.118992

ABSTRACT

We gratefully acknowledge the UK COVID-19 Genomics Consortium (COG UK) for funding, and Public Health Wales / Cardiff University and MRC-University of Glasgow Centre for Virus Research for making their COG-UK sequence data publicly available. COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute. The research was supported by the Wellcome Trust Core Award Grant Number 203141/Z/16/Z with funding from the NIHR Oxford BRC. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. We are deeply grateful to Robert Esnouf and the BMRC Research Computing team for unfailing assistance with computational infrastructure. We also thank Benjamin Carpenter and James Docker for assistance in the laboratory, and Lorne Lonie, Maria Lopopolo, Chris Allen, John Broxholme and the WHG high-throughput genomics team for sequencing and quality control. The HIV clone p92BR025.8 was obtained through the Centre For AIDS Reagents from Drs Beatrice Hahn and Feng Gao, and the UNAIDS Virus Network (courtesy of the NIH AIDS Research and Reference Reagent Program). KAL is supported by The Wellcome Trust and The Royal Society (107652/Z/15/Z). MH, LF, MdC, GMC, NO, LAD, DB, CF and TG are supported by Li Ka Shing Foundation funding awarded to CF. PS is supported by a Wellcome Investigator Award (WT103767MA). SummarySARS-CoV-2, the causative agent of COVID-19, emerged in late 2019 causing a global pandemic, with the United Kingdom (UK) one of the hardest hit countries. Rapid sequencing and publication of consensus genomes have enabled phylogenetic analysis of the virus, demonstrating SARS-CoV-2 evolves relatively slowly1, but with multiple sites in the genome that appear inconsistent with the overall consensus phylogeny2. To understand these discrepancies, we used veSEQ3, a targeted RNA-seq approach, to quantify minor allele frequencies in 413 clinical samples from two UK locations. We show that SARS-CoV-2 infections are characterised by extensive within-host diversity, which is frequently shared among infected individuals with patterns consistent with geographical structure. These results were reproducible in data from two other sequencing locations in the UK, where we find evidence of mixed infection by major circulating lineages with patterns that cannot readily be explained by artefacts in the data. We conclude that SARS-CoV-2 diversity is transmissible, and propose that geographic patterns are generated by transient co-circulation of distinct viral populations. Co-transmission of mixed populations could open opportunities for resolving clusters of transmission and understanding pathogenesis.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL